Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite recent advances in natural language generation, it remains challenging to control attributes of generated text. We propose DExperts: Decoding-time Experts, a decoding-time method for controlled text generation that combines a pretrained language model with “expert” LMs and/or “anti-expert” LMs in a product of experts. Intuitively, under the ensemble, tokens only get high probability if they are considered likely by the experts, and unlikely by the anti-experts. We apply DExperts to language detoxification and sentiment-controlled generation, where we outperform existing controllable generation methods on both automatic and human evaluations. Moreover, because DExperts operates only on the output of the pretrained LM, it is effective with (anti-)experts of smaller size, including when operating on GPT-3. Our work highlights the promise of tuning small LMs on text with (un)desirable attributes for efficient decoding-time steering.more » « less
-
Despite considerable advancements with deep neural language models (LMs), neural text generation still suffers from degeneration: the generated text is repetitive, generic, selfcontradictory, and often lacks commonsense. Our analyses on sentence-level attention patterns in LMs reveal that neural degeneration may be associated with insufficient learning of task-specific characteristics by the attention mechanism. This finding motivates onthe-fly attention modulation1– a simple but effective method that enables the injection of priors into attention computation during inference. Automatic and human evaluation results on three text generation benchmarks demonstrate that attention modulation helps LMs generate text with enhanced fluency, creativity, and commonsense reasoning, in addition to significantly reduce sentence-level repetition.more » « less
-
We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.more » « less
An official website of the United States government

Full Text Available